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ABSTRACT 

To foster shared battlespace awareness among air strategy planners, BAE Systems has developed Commander’s Model 
Integration and Simulation Toolkit (CMIST), an Integrated Development Environment for authoring, integration, 
validation, and debugging of models relating multiple domains, including political, military, social, economic and 
information. CMIST provides a unified graphical user interface for such systems of systems modeling, spanning several 
disparate modeling paradigms. Here, we briefly review the CMIST architecture and then compare modeling results using 
two approaches to intent modeling.  The first uses reactive agents with simplified behavior models that apply rule-based 
triggers to initiate actions based solely on observations of the external world at the current time in the simulation.  The 
second method models proactive agents running an embedded CMIST simulation representing their projection of how 
events may unfold in the future in order to take early preventative action.  Finally, we discuss a recent extension to 
CMIST that incorporates Temporal Bayesian Knowledge Bases for more sophisticated models of adversarial intent that 
are capable of inferring goals and future actions given evidence of current actions at particular times.     

Keywords: Adversary modeling, intent inference, Bayesian Knowledge Bases, model integration, agent-based 
modeling, system dynamics, dynamic Bayesian networks 
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1. INTRODUCTION 
Recent military operations have demonstrated an urgent need for the U.S. Air Force and the joint community to expand 
the scope of its intelligence, planning, and operations beyond traditional force-on-force strategy against enemy military 
and infrastructure targets to include political, economic, social, and information considerations as well.  Previous 
attempts in the modeling and simulation community to model such non-kinetic effects have been limited to non-
executable conceptual models that are designed to describe but not actually simulate dynamic, complex interactions [1].  
Other approaches that seek to model non-kinetic factors as scalar force limiters or multipliers within existing large-scale 
executable legacy simulation environments offer only limited insight into non-kinetic and kinetic interactions due to lack 
of explicit non-kinetic process models and actual feedback to the kinetic models [2].  To address this problem, under the 
AFRL Commander’s Predictive Environment program, BAE Systems Advanced Information Technologies developed 
the Commander’s Model Integration and Simulation Toolkit (CMIST) as an integrated exploratory modeling 
environment combining multiple simulation paradigms such as system dynamics, Bayesian cause-effect models, and 
agent-based discrete event models, to enable rapid forecasting of battlespace effects (see Figure 1).  For technical details 
on CMIST, see [3] and [4]. 

Through the first two years of development, we have applied CMIST’s hybrid modeling environment to develop 
strategic and operational models of varying scale for notional scenarios, including a small-scale counter-insurgency 
vignette and a larger-scale air- and ground-based combat operation in which CMIST was used to compare effects across 
alternative courses of action with vs. without initial PSYOPS missions [5].  Both of these modeling efforts used a 
simplified approach to agent intent modeling in which an agent compares one or more observed properties of the outside 
world to specified thresholds and initiates particular actions by changing one or more variables in the world model under 
its control.  We refer to this as reactive intent modeling in the sense that the agents are simply responding to world 
events as they occur.  Recently, we have extended CMIST to allow an agent to run an embedded CMIST simulation 
model representing its own internal, possibly simplified, model of the outside world.  This proactive intent model allows 
the agent to project the future state of the world, including adversary actions, in order to take appropriate preventative 
measures.  We discuss in Sections 0 and 0 comparative results using reactive vs. proactive intent models in the context 
of our notional PSYOPS-Combat scenario.  

We encountered two limitations of the rule-based agent modeling family used in these modeling experiments.  First, the 
intent models lacked explicit representation of the goals and beliefs driving an agent’s behavior.  Second, the models 
lacked a mechanism for reasoning over evidence to infer which goals an agent is currently pursuing as well as future 
actions implied by those goals.  To address these limitations, BAE Systems collaborated with Dartmouth College to 
incorporate Bayesian Knowledge Bases (BKB) as a new CMIST modeling family for adversary intent modeling.  Details 
on the technical approach to BKB are found in [6] and [7], and recent applications to modeling and wargaming are 
discussed in [8] and [9].  In Section 0 we describe an example of a BKB intent model used to infer whether an 
adversary’s course of action involves conventional warfare, irregular warfare, or a combination.  We then discuss in 
Section 0 ongoing work by Dartmouth to extend this capability to support temporal constraints between belief nodes in a 
BKB that can be used to infer times of future actions based on the time and certainty of observed evidence.  We preface 
these discussions with a brief overview of CMIST’s system architecture in Section 0. 
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Figure 1.  CMIST’s hybrid modeling environment was extended to support advanced intent modeling via embedded 

simulation and Bayesian Knowledge Bases for inference of goals and beliefs.   
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2. SYSTEM ARCHITECTURE 
CMIST is an Integrated Development Environment (IDE) for model authoring, integration, validation, and visualization.  
It is built on the versatile Eclipse framework, a widely used open source Java IDE.  CMIST utilizes recent advances in 
model-driven architecture (MDA) to automate the process for integrating new modeling paradigms.  The MDA process 
in turn is based on proven software engineering standards for model representation and exchange, such as Unified 
Modeling Language (UML) and eXtensible Markup Language (XML).  

CMIST is designed with a two-stage architecture for distinct categories of users (see Figure 2): 

1. A Developer’s IDE for simulation and software developers to rapidly incorporate new simulation 
methodologies and tools, making them available for use in the Commander’s IDE.  The Developer’s IDE 
provides the shared representation and common repository for model description and methodology 
characterization, such as timing, and method of computation.  Eclipse’s Graphical Modeling Framework (GMF) 
is used to design a representation for the graphical modeling primitives of a new methodology and 
automatically generate the Java source code to implement the data classes, controller, and editor palette for the 
methodology.  After code generation, one need only implement a mediator to execute a specified increment of 
simulation time in a native simulation tool for the chosen methodology and to translate from that tool’s native 
data model to CMIST’s shared representation. 

2. A Commander’s IDE for commander and supporting staff to author models, integrate hybrid models via 
transform links, execute models over a specified time horizon, and debug the integrated models via intuitive 
visualization displays, including time series charts and map-based overlays.   

 
Figure 2. CMIST’s two-tier architecture with IDEs for Modelers and for Developers 

CMIST includes an extensible library for creating reusable data transforms that enable exchange of data between 
different modeling families.  CMIST also provides multiple interaction patterns to synchronize multiple native 
simulations with disparate modeling paradigms, such as discrete time/event simulation, continuous-time simulation, and 
iterative solution methods such as Monte Carlo sampling.   

Prior to running a model, CMIST uses the transform links to partition the overall model into fragments that each rely 
only on a particular methodology, as shown in Figure 3.  It then compiles each fragment into a corresponding native 
model in an underlying third-party tool responsible for execution of that methodology.  Finally, the CMIST simulation 
engine executes the model according to the chosen interaction pattern, for example, stepping time forward in each native 
model and then flowing outputs across transforms to the inputs of the next fragment.   

The initial CMIST release successfully integrated three modeling methodologies and native tools, as shown in Figure 2: 

• Probabilistic cause-effect modeling enabled by dynamic Bayesian network algorithms (DBN) [10] from 
AFRL’s Operational Assessment Tool (OAT), 

• System dynamics (SD) modeling based on [11] and [12], enabled by U.C. Berkeley’s open source Ptolemy II 
framework, and 

• Agent-based modeling enabled by Telecom Italia Lab’s open Java Agent Development (JADE) framework.1 

                                                 
1 http://jade.tilab.com/ 
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Figure 3. CMIST automatically compiles, executes, and integrates model fragments for multiple methodologies, including 

system dynamics, cause-effect, and agent-based modeling. 
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3. REACTIVE INTENT MODELING 
This section describes a baseline Insurgent Growth model that is used as the backdrop for experimenting with reactive 
vs. proactive agent decision-making.  The model is based on a larger-scale Military-Social-Information model 
investigating the effects of a non-kinetic PSYOPS campaign on major combat operations against a fictional adversary, 
Califon, which attempts to invade a neutral neighbor, Nevidah, in order to gain control of valuable mineral fields near 
the border between the two countries.  For more details on this combined PSYOPS-combat model see [5].     

 
Figure 4. CMIST model fragment with switches for reactive vs. proactive counter-insurgency attack strategies. 

The major dynamic of interest here is growth of Insurgents due to a positive feedback loop (not shown in Figure 4) that 
exploits fear among the general population to convert additional insurgents. This results in an S-shaped growth pattern 
(Figure 5, left). The Blue commander can observe the amount of violence and can observe an estimated quantity of 
insurgents. Based on this data, the Blue commander can reactively order an offensive attack to kill insurgents, or can 
proactively (preemptively) order the attack, and/or can mount a PSYOPS campaign to impact insurgent growth. Three 
switches in the model (shown in black) provide rapid access to these options: Reactive, Proactive, and Psyops (not 
discussed here but see [5]).  When the Reactive switch is set to 1 and the other two are set to 0, the Blue_Commander 
agent bypasses its embedded model and utilizes built-in logic to initiate a counter-attack when observed_violent_actions 
exceeds a threshold of 50 incidents per day.  The results are shown in Figure 5 (right).  While the counter-attack 
eventually causes the rate of insurgent growth and violence to decrease, the peak violence of 75 is significantly higher 
than the desired threshold.  Thus, by reacting only after the threshold was exceeded, the commander agent actually failed 
to adequately contain the level of violence.  It is clear that a more proactive strategy is required, which we will 
demonstrate in the next section using embedded simulation. 
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Figure 5.  Insurgent growth and violence with no Blue intervention (left) vs. reactive Blue counter-attack (right). 
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4. EMBEDDED INTENT MODELING 
4.1 Embedded Simulation Overview 

In Section 0, we modeled commanders as reactive decision-makers. Here, we model commanders as proactive decision-
makers. In order to be proactive, the agent must have some beliefs or projections of the future state of the world, rather 
than simply observing the current state of the world. To achieve this, we extended the JADE agent decision-making 
implementation to include a reference to a separate CMIST model. This model is embedded in the agent and is its 
representation of the world, a mental model of the “real” world. The main model refers to the primary model in CMIST 
that represents the real world situation (a portion is shown in Figure 4 above). This is the normal simulation model that 
would be built by an analyst to answer particular questions and forecast outcomes. The embedded model refers to a 
model that is built separately for use by an agent in the main model. Multiple agents may have their own model, or may 
share a model. 

The simulation engine recursively executes embedded models. For each time-step in the main model, the embedded 
model simulates for a user-defined number of time steps. The simulation engine saves all output data for each individual 
embedded model run. 

4.2 Proactive Intent Modeling 

The proactive simulation allows the commander to forecast a single possible future based upon an embedded model and 
observations from the environment (Figure 6). The commander uses the observations to set initial parameter values in 
the embedded model, simulate the model for a fixed number of time steps, and retrieve the result. Here, the number of 
time steps is set to 20, allowing the commander to forecast 20 days into the future. 

 
Figure 6. Commander’s embedded mental model of the dynamics of insurgent growth 

The core feature of the embedded model is a positive feedback loop in insurgent recruiting. When the blue 
psyops_campaign and attack_insurgent variables are false, the number of insurgents grows exponentially at a rate 
specified by the variable growth_rate.  When psyops_campaign is true, the recruiting rate lessens by the scale factor 
effect_of_psyops.  When attack_insurgents is true, the negative feedback from the SD flow node deaths counteracts 
the insurgent growth.  

The commander agent’s forecast from this embedded model is compared to a desired threshold value for amount of 
violence (a property set within the agent). When the forecasted violence exceeds the threshold, the commander orders a 
mission to attack the insurgents.  
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Figure 7. Proactive offensive to attack insurgents 

Figure 7 shows the main model results when the proactive switch is on and the other switches are off.  Note how the 
attack starts much earlier (Day 12 as opposed to Day 20) and leads to significantly fewer insurgents (240 instead of 360) 
and less violence at their peak than in the reactive scenario.  Note also that the death rate of insurgents from the blue 
attack is smaller, because the attack commenced when there were fewer insurgents and our main model applies a 
fractional death rate multiplier to the number of insurgents.    This proves to be a much more effective strategy than the 
reactive approach, since the Blue commander actually achieved its goal of keeping violence rate under the desired 
threshold of 50 incidents per day.   
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5. ADVERSARY INTENT MODELING WITH BAYESIAN KNOWLEDGE BASES 
While our new embedded simulation capability allows an agent to more proactively match intended actions to intended 
outcomes, it still fails to adequately capture the beliefs and goals that motivate the agent’s intent.  Furthermore, CMIST 
lacked a mechanism for reasoning over observed evidence to infer which goals are currently being pursued.  To address 
this gap, we enlisted the help of Dr. Eugene Santos, Jr. and his team at Dartmouth College, to integrate a new modeling 
family, Bayesian Knowledge Bases (BKBs).  We chose BKBs because it preserves both a strong semantics and an 
intuitive organization of knowledge, manages uncertainty between events [6], can be constructed easily based on 
incomplete information [7] and is computational efficient due to its compact structure [13]. This extension on intent 
modeling also facilitates our modeling of commanders’ intent including their behavior and beliefs. More detail about 
adversarial intent inferencing and dynamic wargaming applications can be found in [8] and [9]. 

5.1 BKB Overview 

Like CMIST’s existing DBN modeling family, which is used for forward inference in cause-effect models, BKBs are 
abstractions over normal Bayesian Networks (BNs) [14], requiring only one probability estimate per node. But unlike 
DBNs, BKBs retain the expressiveness of BNs in that each random variable may have more than just true or false states. 
BKBs feature two types of nodes.  Instantiation nodes or “I-nodes,” depicted as text-boxes in Figure 8 (b), express 
whether the node’s random variable is in a particular state.  An I-node is uniquely defined by one state of a random 
variable. Thus there can be many different I-nodes that represent various states of a single random variable. This is in 
contrast to a Bayesian Network where each node represents a full random variable along with all of its states.  Instead of 
causal links, BKBs feature support nodes, or “S-nodes,” depicted as black dots that encode the uncertainty of the causal 
relationships between I-nodes. The input to an S-node can be zero or more I-nodes, the output is exactly one I-node, and 
a weight is given to each S-node.  The weight of an S-node is the conditional probability of its head I-node given that its 
tail I-nodes are known to be true. This sparse “if-then” structure provides the knowledge engineering advantages of 
forward-chaining expert systems, including soundness of inference in the absence of complete knowledge.  BKBs can 
also capture cyclical knowledge structures not allowed in BNs or DBNs. Finally, BKBs are well-suited to direct closed 
form inference rather than sampling. BAE Systems and Dartmouth have also shown that random-variable level acyclic 
BKBs can also be mapped to a full BN representation [ref], allowing for fast inference in third-party BN tools such as 
Norsys’s Netica.®  

  
Figure 8.  A probabilistic model using a BN or DBN (a) versus a BKB (b) (Source: [6]). 
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The main function of BKBs is to do probabilistic inferencing so as to find the marginal probability of each random 
variable and answer questions regarding the most probable state of the world. The modeled world can be updated based 
on evidence which is observed about states of the random variables. In other words, evidence sets the states of random 
variables that are known to be true (to a value of 1.0), and the inferred state of the world is the most likely world that 
supports the evidence. The function of probabilistic inferencing includes prediction and explanation. Prediction is 
achieved by extending the current evidence forward to the unknown state of the world, while explanation is to determine 
the cause of current state by extending the known evidence backward to hypotheses. 

5.2 BKB Intent Model 

 
Figure 9. BKB intent model for Califon. 
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This section covers a short description of a BKB fragment developed by BAE Systems and Dartmouth to model 
Califon’s intent (shown in Figure 9). The model includes four main types of I-Nodes, in keeping with an intent modeling 
convention developed by Dartmouth: 

• (B) Belief – What the entity believes about others 

• (X) Axiom – What the entity believes about itself 

• (G) Goal – What results the entity wants to achieve 

• (A) Action – How the entity will carry out its tasks 

The main intent drivers in this model come from the belief “(B) Nevidah will build a port.” Califon’s axiom “(X) Tariff 
income” is that the Nevidah port will either decrease income (most likely), maintain the same income, or increase 
income (least likely).  The amount of Califon tariff income will influence their goal “(G) Preserve economic influence.” 
This goal then drives at least two different goal-action structures: 1) to gain control of the mineral fields, and 2) to 
prevent Nevidah’s port development. 

Califon actions occur near the bottom of the diagram. When values change in the CMIST model to reflect changes in the 
real world, they serve as evidence that can be used to influence the known state of BKB nodes (usually actions, but here 
we also set evidence on a Califon belief). Since CMIST runs the BKB inference engine for each time-step in the main 
simulation, when new evidence is received, the probabilities in the BKB model are adjusted to reflect the most-likely 
explanation, setting the most probable nodes to true (1.0).  Collectively, the nodes inferred to be true represent one or 
more causal paths from upstream I-Nodes to the observed I-Nodes.   

We will demonstrate this inference capability by setting evidence on different combinations of I-Nodes in the model.  In 
addition to setting evidence directly on an I-Node, our model can transmit evidence from a System Dynamics variable 
using a transform link.  When the SD stock Nevidah_Port_Planning’s value (the shaded box shown at the top of the 
model) exceeds 100, the transform labeled “Set as Evidence” activates and sets the I-Node “(B) Nevidah will build port 
= yes” to true.  In addition, we have also directly set evidence on the I-Node “(A) Intimidate Port Contractors = yes” to 
true, since this represents a low-risk tactic used by Califon.  All other I-Nodes have no evidence set, which is the default.  
Upon running the model for eight time-steps, we observe in Figure 10 (left) that the resulting value of this I-Node is 
indeed true (1.0) from Day 1 forward (values at time-step 0 are disregarded because it is an initialization step).  
Furthermore, CMIST detects that the stock Nevidah_Port_Planning exceeds 100 on Day 3, causing the I-Node “(B) 
Nevidah will build port = yes” to be true from Day 4 forward (information takes one time-step to flow across transform 
links).     

 
Figure 10 (left) shows the timing of evidence in the model of Califon’s intimidation of contractors and Nevidah’s port 

construction, and (right) shows the BKB’s inference about Califon’s intermediate goals and axions. 
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Figure 10 (right) shows additional goals and axioms inferred by the BKB as the most probable explanation for the 
evidence.  Even on Day 1, before Nevidah as begun building the port, Califon’s intimidation of port contractors is 
evidence of Califon’s goals “Prevent Nevidah port development = yes” and “Preserve economic influence = yes.”  
However, initially Califon’s axiom “Tariff income = stationary” is true because it has not seen evidence that Nevidah is 
building the port.  This changes on Day 3, when its value changes to false and the value of axiom “Tariff income = 
decreasing” changes to true. 

Now, we examine another aspect of the intent model describing Califon’s goal to gain control of the disputed mineral 
fields across the Nevidah border.  The SD stock Weapon_Supply at the bottom of the model increases by 500 each 
time-step.  The evidence transform link from the SD variable Insurgents_Using_Weapons to the BKB action “(A) 
Supply weapons to insurgents in Nevidah = 2000” will activate when the stock’s value exceeds 2000.  As shown in 
Figure 11 (left), this action node becomes true from Day 5 forward.  The BKB then computes the most probable causal 
explanation, working from low-level to high-level goals.  The model infers that  the following goals are true, as shown in 
Figure 11 (right):  

• (G) Gain control unconventionally = yes 

• (G) Gain control of mineral fields = yes 

• (G) Preserve regional influence = yes 

 
Figure 11. When Califon’s weapons supply to insurgents exceeds 2000, the BKB infers Califon’s intention to gain control 

of mineral fields using unconventional means. 
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6. TEMPORAL BAYESIAN KNOWLEDGE BASES 
In real-time complex systems, the interactions of processes change with time. Especially in the battlespace, the change of 
strategies in response to the passage of time is as important as other stimuli. Therefore, our system needs a unified model 
to capture both the semantics for uncertainty and the semantics for time. Our initial integration of BKB within CMIST’s 
simulation engine described above allowed the BKB to react to changes in evidence from other modeling families at 
different times, but the BKB itself did not contain a representation of time. Under this effort, Dartmouth has developed 
an extension of BKB that incorporates temporal constraints following the design of a temporal network in [16]. This was 
done without sacrificing BKB’s expressiveness (encoding of multi-valued states) or their efficiency (use of closed form 
inference rather than sampling).  This new Temporal BKB (TBKB) extension allows users to specify a time interval (a, 
b) on each I-node, where “a” denotes the start time, and “b” denotes the duration, and temporal dependencies between I-
nodes on S-nodes. The time dependency is represented by one of the three time relations: equals (=), precedes (<) and 
follows (>), and by the latency between the start times of two I-nodes. During the inferencing of TBKB, the observed 
time interval together with the state can be submitted as evidence. However, it is sometimes unattainable to obtain the 
complete temporal information of an event. Therefore, we also allow incomplete information in the evidence. Figure 12 
shows a TBKB fragment depicting timing of goals and beliefs and delayed secondary goals and actions. The start and 
end times on I-Nodes represent timing of causes. The I-Node is assumed to have the specified probability only during 
this interval; at all other times its probability is unknown by default. The S-Node delays allow specification of timing of 
both disjunctive (OR) and conjunctive (AND) effects. The pair of I-Nodes G1=Yes and B2=No, and the pair of B1=Yes 
and B2=Yes each have a separate child S-Node with its own conditional probability and time delay, an example of 
disjunctive temporal causes.  During the delay period the model behaves as if there is no S-Node connection.  After the 
delay, the usual probability semantics for S-Nodes and I-Nodes hold. The I-Nodes G2=Yes and G3=Yes share a single 
child S-Node, indicating a conjunctive causal influence; the child I-Node (A1) is not affected until at least 10 days after 
both G2 and G3 become true.  This ability to model temporal aspects of an agent’s intent provides a more expressive 
representation for enemy courses of action, including sequencing of tasks and delayed, cascading effects. 

 
Figure 12. Example TBKB model fragment depicting timed I-Nodes and delays on S-Nodes. 
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7. FUTURE WORK 
Our current research plans for CMIST include several new capabilities.  BAE Systems and Dartmouth are currently 
collaborating on a new Colored Petri Net (CPN) modeling family [13], based on an open-source Petri net modeling tool 
called Platform-Independent Petri Net Environment (PIPE).2   We have extended PIPE to support colored tokens with 
deterministic time delays and stochastic prioritization of transitions.  CPNs are particularly well suited to modeling 
information flow within dynamic processes.  We have begun CPN modeling of several relevant Air Force operational 
processes, including a Time Critical Targeting cell, which will be used in our Califon scenario to strike against enemy 
Surface-to-Air Missile threats.  In addition to CPNs, we plan to extend CMIST with new nodes and attributes for 
capturing source metadata used to inform model structure and initialization.  Building such documentation directly into 
models will facilitate validation of models and help explain the rationale behind a model’s design to decision-makers.   

  

                                                 
2 http://pipe2.sourceforge.net/ 
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8. CONCLUSIONS 
We have integrated into CMIST two new techniques for adversary intent modeling that are significantly more 
sophisticated than the methods available in previous agent-based and DBN models.  First, embedded simulation 
provided a means of encoding a dynamic internal model within an agent.  Using a notional counter-insurgency model, 
we showed how this can be used to trigger proactive decision-making based on the agent’s forecast of future state from 
current trends.   Second, Bayesian Knowledge Bases provided a richer means of modeling an agent’s intent in terms of 
its axioms and beliefs about itself and others, its primary and secondary goals, its planned actions, and the causal 
relationships among these concepts.  Unlike the existing DBN modeling family, BKBs provided a means of inferring an 
agents goals and beliefs from observed evidence, by computing the most probable explanation.  Furthermore, transform 
links enable other modeling families such as System Dynamics to interact with BKB fragments by setting evidence at 
certain times during execution, causing the BKB to update its most probable explanation dynamically.  Temporal BKBs, 
currently in progress, will provide an even richer dynamic intent representation, modeling scheduled actions and delays 
between causes and effects.  Collectively, these new capabilities provide a powerful intent modeling capability for 
warfighters and analysts to better understand their adversaries and forecast possible futures. 
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